Laboratory planner by day, toddler parent by night, enthusiastic everything-hobbyist in the thirty minutes a day I get to myself.

  • 0 Posts
  • 93 Comments
Joined 11 months ago
cake
Cake day: July 31st, 2023

help-circle

  • The context of those passages, as I recall, is basically that “Jesus is gonna come back any second now, so don’t bother with worldly concerns like marriage and making babies. Just devote your life to being a good Christian and leave the fornicating to the heathens, unless you absolutely can’t live without getting laid on the regular.” It’s hard to understate the degree to which the early church was basically a doomsday cult. They were certain that the Rapture was going to happen in their lifetimes, and that short time horizon had a big impact on how they thought their society should be organized.




  • The play-by-email mode was broken to the point of uselessness in Civ5 and I don’t think they fixed in it in 6 (you had to have an always-on Windows desktop system running the server, and because the game logic was integrated into the graphics engine you couldn’t run it headless, and then on top of that there was basically no working system to coordinate active DLCs between players so most of the time people couldn’t join even if you did get the damn thing running) so my friends and I tried once and gave up. I would love for 7 to have a robust PBEM system so that we can play together without needing to spend hours a week watching paint dry while everybody else plots their turns, but I’m not holding my breath.


  • Any time you see perovskite-based cells mentioned, you can assume for the time being that it’s just R&D. Perovskites are cool materials that open up a lot of neat possibilities, like cheaply inkjet-printing PV cells, but they have fundamental durability issues in the real world. When exposed to water, oxygen, and UV light, the perovskite crystals break down fairly rapidly.

    That’s not to say that the tech can’t be made to work – at least one lab team has developed cells with longevity similar to silicon PVs – but somebody’s going to have to come up with an approach that solves for performance, longevity, and manufacturability all at once, and that hasn’t happened yet. I imagine that when they do, that will be front-and-center in the press release, rather than just an efficiency metric.




  • This is actually becoming somewhat commonplace. For example, in many cutting-edge cancer therapies, blood is drawn from the patient, processed in tissue-culture suites on site to extract the patient’s immune cells and sensitize them to some marker expressed by their specific cancer cells, and then the modified immune cells are returned to the patient room and transfused back into their bodies. It’s not cheap per se but it’s something that most top-tier cancer centers can do, and to do the similar process of extracting stem cells, inducing them to transform into pancreatic islet cells, and transplanting those into the patient’s pancreas isn’t that big of a jump – and it’d be cheaper than a lifetime of insulin in any case. It also points the way towards treating other kinds of organ failure without the risk of rejection, too.



  • Data center cooling towers can be closed- or open-loop, and even operate in a hybrid mode depending on demand and air temps/humidity. Problem is, the places where open-loop evaporative cooling works best are arid, low-humidity regions where water is a scarce resource to start.

    On the other hand, several of the FAANGS are building datacenters right now in my area, where we’re in the watershed of the largest river in the country, it’s regularly humid and rainy, any water used in a given process is either treated and released back into the river, or fairly quickly condenses back out of the atmosphere in the form of rain somewhere a few hundred miles further east (where it will eventually collect back into the same river). The only way that water is “wasted” in this environment has to do with the resources used to treat and distribute it. However, because it’s often hot and humid around here, open loop cooling isn’t as effective, and it’s more common to see closed-loop systems.

    Bottom line, though, I think the siting of water-intensive industries in water-poor parts of the country is a governmental failure, first and foremost. States like Arizona in particular have a long history of planning as though they aren’t in a dry desert that has to share its only renewable water resource with two other states, and offering utility incentives to potential employers that treat that resource as if it’s infinite. A government that was focused on the long-term viability of the state as a place to live rather than on short-term wins that politicians can campaign on wouldn’t be making those concessions.



  • Thrashy@lemmy.worldtoFuck Cars@lemmy.world[meme] Suburban sprawl starter pack
    link
    fedilink
    English
    arrow-up
    30
    arrow-down
    1
    ·
    edit-2
    1 month ago

    I live in an old, once-redlined streetcar suburb, and my folks are about a half hour away in a new, nearly-exurban tract home development. They love to see their grandson and are happy to babysit him when my wife and I want a date night, but we’ve just about stopped taking them up on that offer because every restaurant in a reasonable distance from their neighborhood is some mediocre, mid-market national chain that’s utterly devoid of charm, serving plates that have been ruthlessly value-engineered to minimize the need for specialized equipment or skilled talent in the kitchen. The area is quiet, I guess, and I’m sure the land was cheap, but there’s no there there.


  • Problem is that if you’re looking for FOSS software outside of the absolute most mainstream use cases, that type of software is the only available option. GIMP and Inkscape have been mentioned but throw FreeCAD into the ring as well. Shotcut and Kdenlive are passable, but don’t quite measure up to the commercial alternatives.

    My particular hobby horse is CFD code. OpenFOAM is fantastic from a technical standpoint, but until recently, to actually use it you either had to buy a commercial front-end, or literally write C++ header files to set up your cases. There’s a heroic Korean developer who’s put together a basic but very functional front-end GUI in the last year to change that, but it only covers relatively straightforward cases at the moment.



  • It’s not a coincidence that Texas is a hotbed of development for “microgrid” systems to cover for when ERCOT shits the bed – and of course all those systems are made up of diesel and natural gas generator farms, because Texans don’t want any of that communist solar power!

    I’ve got family in Texas who love it there for some reason, but there’s almost no amount of money you could pay me to move there. Bad enough when I have to work on projects in the state – contrary to the popular narrative, in my personal opinion it’s a worse place than California to try and build something, and that’s entirely to do with the personalities that seem to gravitate to positions of power there. I’d much rather slog through the bureaucracy in Cali than tiptoe around a tinpot dictator in the planning department.


  • Thrashy@lemmy.worldtoTechnology@lemmy.worldThe decline of Intel..
    link
    fedilink
    English
    arrow-up
    8
    arrow-down
    1
    ·
    edit-2
    1 month ago

    The only link I am aware of is that Intel operates an R&D center in Haifa (which, it happens, is responsible for the Pentium M architecture that became the Core series of CPUs that saved Intel’s bacon after they bet the farm on Netburst and lost to Athlon 64). Linkerbaan’s apparent reinvention of the Protocols of the Elders of Zion to the contrary, the only real link seems to be that Haifa office, which exists to tap into the pool of talented Israeli electronics and semiconductor engineers.


  • Thrashy@lemmy.worldtoTechnology@lemmy.worldThe decline of Intel..
    link
    fedilink
    English
    arrow-up
    15
    arrow-down
    1
    ·
    edit-2
    1 month ago

    Historically AMD has only been able to take the performance crown from Intel when Intel has made serious blunders. In the early 2000s, it was Intel commiting to Netburst in the belief that processors could scale past 5Ghz on their fab processes, if pipelined deeply enough. Instead they got caught out by unexpected quantum effects leading to excessive heat and power leakage, at the same time that AMD produces a very good follow-on to their Athlon XP line of CPUs, in the form of the Athlon 64.

    At the time, Intel did resort to dirty tricks to lock AMD out of the prebuilt and server space, for which they ultimately faced antitrust action. But the net effect was that AMD wasn’t able to capitalize on their technological edge, Ave ended up having to sell off their fabs for cash, while Intel bought enough time to revise their mobile CPU design into the Core series of desktop processors, and reclaim the technological advantage. Simultaneously AMD was betting the farm on Bulldozer, believing that the time had come to prioritize multithreading over single-core performance (it wasn’t time yet).

    This is where we enter the doldrums, with AMD repeatedly trying and failing to make the Bulldozer architecture work, while Intel coasted along on marginal updates to the Core 2 architecture for almost a decade. Intel was gonna have to blunder again to change the status quo – which they did, by betting against EUV for their 10nm fab process. Intel’s process leadership stalled and performance hit a wall, while AMD was finally producing a competent architecture in the form of Zen, and then moved ahead of Intel on process when they started manufacturing Zen2 at TSMC.

    Right now, with Intel finally getting up to speed with EUV and working on architectural improvements to catch up with AMD (and both needing to bridge the gap to Apple Silicon now) at the same time that AMD is going from strength to strength with Zen revisions, we’re in a very interesting time for CPU development. I fear a bit for AMD, as I think the fundamentals are stronger for Intel (stronger data center AI value proposition, graphics group seemingly on the upswing now that they’re finally taking it seriously, and still in control of their destiny in terms of fab processes and manufacturing) while AMD is struggling with GPU and AI development and dependent on TSMC, perpetually under threat from mainland China, for process leadership. But there’s a lot of strong competition in the space, which hasn’t been the case since the days of the Northridge P4 and Athlon XP, and that’s exciting.


  • In one of my psych courses the professor noted a study (not sure of the source, this was closing in on twenty years ago now) that while psychotherapy had pretty good efficacy for certain things, it was equivalent with “talk openly with your friends about it” in most metrics. A therapist is great for providing specific strategies to address particular challenges (for issues like PTSD, for example, a therapist can help to manage an exposure therapy approach) but after a point you’re kinda just paying through the nose for somebody to professionally emulate you having a healthy friendship with a well-adjusted person.


  • On the one hand, I agree with you that the expected lifespan of current OLED tech doesn’t align with my expectation of monitor life… But on the other hand, I tend to use my monitors until the backlight gives out or some layer or other in the panel stackup shits the bed, and I haven’t yet had an LCD make it past the decade mark.

    In my opinion OLED is just fine for phone displays and TVs, which aren’t expected to be lit 24/7 and don’t have lots of fixed UI elements. Between my WFH job and hobby use, though, my PC screens are on about 10 hours a day on average, with the screen displaying one of a handful of programs with fixed, high contrast user interfaces. That’s gonna put an OLED panel through the wringer in quite a bit less time than I have become used to using my LCDs, and that’s not acceptable to me.