While the concepts outlined in the team’s new paper pave the way toward making travel through space nearing light speed a reality, constructing such an engine is likely something that will only be feasible far in the future, as the present state of technology would not allow for such a device.
The paper is paywalled and I am too lazy to look for a free/open link, but the shown graphs indicate many squared meters of energy concentrations of 1 - 10 * 10^39 joules.
The entire energy output of the Sun, in a year, is around 10^34 joules. 6.6 * 10^39 joules is apparently the estimated total mass energy of the Moon, if you basically perfectly E = mc^2 transformed it into pure energy.
In 2010 the estimated total energy consumption of humans on Earth was 5 * 10^20 joules.
So we just need something around ten billion * ten billion more joules than that, presumably generated by something i dont know, naval frigate sized?
… by an astounding margin.
The paper is paywalled and I am too lazy to look for a free/open link, but the shown graphs indicate many squared meters of energy concentrations of 1 - 10 * 10^39 joules.
The entire energy output of the Sun, in a year, is around 10^34 joules. 6.6 * 10^39 joules is apparently the estimated total mass energy of the Moon, if you basically perfectly E = mc^2 transformed it into pure energy.
In 2010 the estimated total energy consumption of humans on Earth was 5 * 10^20 joules.
So we just need something around ten billion * ten billion more joules than that, presumably generated by something i dont know, naval frigate sized?
Yeah. Faaaaaar off indeed.
Like Hippocrates telling people that a new breakthrough in medicine could allow bones to be seen in detail without cutting into flesh